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Abstract: Native Web technologies provide great potential for musical expression. We introduce two JavaScript libraries
towards this end: Gibberish.js, providing heavily optimized audio DSP, and Interface.js, a GUI toolkit that works with
mouse, touch, and motion events. Together they provide a complete system for defining musical instruments that can
be used in both desktop and mobile Web browsers. Interface.js also enables control of remote synthesis applications via
a server application that translates the socket protocol used by Web interfaces into both MIDI and OSC messages.

We have incorporated these libraries into the creative coding environment Gibber, where we provide mapping
abstractions that enable users to create digital musical instruments in as little as a single line of code. They can then be
published to a central database, enabling new instruments to be created, distributed, and run entirely in the browser.

Web technologies provide an unsurpassed oppor-
tunity to present new musical interfaces to new
audiences. As Web browsers have matured, the tools
available within them to create dynamic musical
content have also progressed, and in the last three
years real-time and low-level audio programming
in the browser has become a reality. Applications
written in JavaScript and designed to run in the
browser offer remarkable performance, portability
across mobile and desktop platforms, and longevity
due to standardization. Given the browser’s ubiquity
on both desktop and mobile devices, it is, arguably,
one of the most widely distributed classes of ap-
plications in history, and it is rapidly becoming a
“write once, run anywhere” solution for musical
interfaces.

Browser-based digital musical instruments (DMIs)
can incorporate accelerometers, multitouch screens,
gyroscopes, and fully integrated application pro-
gramming interfaces (APIs) for sound synthesis,
making Web technologies particularly attractive
for instrument designers. Our research explores the
affordances of DMIs that run in Web browsers, with
the belief that such instruments should be open and
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cross-platform. The libraries described here consti-
tute a significant step toward Web-based musical
interfaces that run on desktop machines, laptops,
and mobile devices, regardless of the browser or
operating system in which they are presented.

Although modern Web development typically
requires knowledge of multiple programming and
markup languages (at a minimum JavaScript, Hyper-
text Markup Language [HTML], and Cascading Style
Sheets [CSS]), our research empowers instrument
designers to take advantage of Web browsers without
having to learn all their various quirks and eccen-
tricities. We designed the syntax of Gibberish.js and
Interface.js so that they can be used, both indepen-
dently or in tandem, almost entirely via JavaScript
alone, requiring a bare minimum of HTML and
absolutely no CSS. The library downloads include
template projects containing boilerplate HTML
that enables programmers to quickly begin creating
interfaces and audio graphs in JavaScript.

Continuing in this vein, we have integrated our
research into the browser-based, creative coding
environment Gibber (Roberts and Kuchera-Morin
2012; Roberts et al. 2014a) which removes the need
to use any HTML at all. Gibber’s multirate mapping
abstractions enable DMIs to be tersely defined;
a single line of JavaScript can create a simple
instrument with an audio graph, an interface,
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and mappings between the interactive and audio
elements. Instruments designed in Gibber can be
published to its central database, distributed, and
subsequently accessed via URL.

Problems and Possibilities of the Web Audio API

In 2011 Google introduced the Web Audio API
(available online at www.w3.org/TR/webaudio) and
incorporated supporting libraries into its Chrome
browser. The Web Audio API is an ambitious
document; instead of merely defining a basic infras-
tructure for processing audio callbacks, it defines
how to create audio graphs and includes a wide
variety of standard ugens (unit generators). These
ugens are native precompiled objects that can be
assembled into graphs and controlled by JavaScript.
The API has since been adopted by Firefox and Safari
in both their desktop and mobile incarnations; as of
this writing, support is in development for Internet
Explorer (see status.modern.ie/webaudioapi).

Although the Web Audio API includes highly
efficient ugens for common audio tasks such as con-
volution and fast Fourier-transform (FFT) analysis,
there are tradeoffs that accompany their use. Many
relate to the architectural decision to process blocks
of at least 256 samples (circa 6 msec) instead of
allowing single-sample processing. This places two
notable restrictions on audio programming: lack of
sample-accurate scheduling for manipulating audio
graphs (particularly node insertion or removal) and
an inability to create feedback networks with short
delays, which are necessary to important signal-
processing applications, including filter design and
physical modeling. Although these limitations are
found in many other audio programming environ-
ments, they are exacerbated in the browser by an
inability to add native extensions that provide such
capabilities. Other environments enable the author-
ing of custom extensions that use feedback. These
are usually written in C++, although Max/MSP also
provides Gen (Wakefield 2012).

Fortunately, the designers of the Web Audio API
took these concerns into account and provided a
solution, which they continue to refine: namely, the
ScriptProcessor node that calculates output using

JavaScript callbacks defined at run time. These afford
sample-accurate scheduling of graph manipulation
and the creation of complex feedback networks,
but at the expense of the efficiency that the native
precompiled ugens provide. Efficiency issues with
the ScriptProcessor node are compounded by the fact
that their processing takes place in the main thread,
which can be subject to blocking due to network
traffic or user interaction (Wyse and Subramanian
2013; Lazzarini et al. 2014). The ScriptProcessor
node also introduces latency equal to the duration of
one callback. For example, if the main audio graph
is being processed in blocks of 256 samples, the use
of a ScriptProcessor node (or nodes) will introduce
an additional 256 samples of latency.

Despite these limitations—and in contrast to
researchers who feel they limit the potential of
the ScriptProcessor node for real-time musical
applications (Wyse and Subramanian 2013)—we
have successfully employed the ScriptProcessor
node in many performances. Using a 2010 Apple
MacBook Pro running at 2.8 GHz, the first author
has given audiovisual live-coding performances
consisting of music programming and real-time
graphics. These have used a full-screen fragment
shader implemented in OpenGL Shading Language
without experiencing glitches in audio playback.
Considering that these performances required
editing programs in two code editors composited
on top of a running OpenGL scene, dynamically
recompiling shaders, and performing all audio signal
processing in the main thread, we feel this is a
strong indicator that the ScriptProcessor node in
its current state is a practicable approach for many
real-time audiovisual applications, particularly
when they are run on moderately fast desktops or
laptops and when reasonable steps are taken to avoid
extra processing on the main thread. For example,
users should avoid resizing browser windows during
performances, as the necessary redraws incur a high
amount of overhead that can easily block the main
thread.

In the near future, ScriptProcessor nodes will
receive a significant upgrade. The Audio Group of
the World-Wide Web Consortium is developing a
specification called Audio Workers that will run
ScriptProcessor nodes in their own threads, and also
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remove the additional latency they currently impose
(Wilson 2014). In effect, ScriptProcessor nodes will
become equal citizens with the other native audio
nodes included in the Web Audio API. This makes
research on optimizing JavaScript audio (outlined
in the next section) particularly important, as more
developers will be motivated to take advantage of the
ScriptProcessor node when Audio Workers become
available.

Gibberish: An Optimized JavaScript Audio Library

The principal reason for JavaScriptÕs excellent
performance in the browser is the use of just-in-
time (JIT) compilation: The virtual machine detects
the most heavily used functions, paths, and type
specializations of the code as it runs, and replaces
them with translations to native machine code.
Although JIT compilation is making waves in
todayÕs browsers, it can trace a long and diverse
history to to the beginnings of Lisp in the late 1950s
(Aycock 2003). Now JIT compilers can approach,
and occasionally even exceed, the performance of
statically compiled C code, though getting the best
performance from a JIT compiler may call for coding
habits quite different from those used for a static
compiler or interpreter.

We began our research by looking at the perfor-
mance bottlenecks associated with the JavaScript
runtime environment (JSRE) and analyzing what
could be done to mitigate them. The most signifi-
cant cost we found while working at audio rate in
a dynamic run-time environment is the overhead
of object lookup. In complex synthesis graphs, the
simple task of resolving object addresses thousands
of times per second (potentially many hundreds
of thousands of times with per-sample processing)
levies a substantial cost. During our experiences
developing Gibber, we found that existing audio
libraries built for the ScriptProcessor node were not
efficient enough to realize the complex synthesis
graphs we envisioned, and thus we began work on
our own optimized library, Gibberish.

Gibberish minimizes the cost of resolving object
addresses by ensuring that data and functions
used are inlined to the master audio callback and

available within its local scope, avoiding the need
for expensive indexing into externally referenced
objects (Herczeg et al. 2009).

Code Generation

Unfortunately, ensuring the locality of data and
procedures for performance is not compatible with
the flexibility to dynamically change the ugen graph,
because adding or removing ugens implies changing
the set of data and procedures that should be
considered local to the audio callback. Our solution
to this problem, inspired by the second authorÕs
doctoral work (Wakefield 2012), uses run-time code
generation.

To optimize the audio callback, the Gibber-
ish codegen (code generation) engine translates
the user-defined ugen graph, created with object-
oriented syntax, into a single flat audio callback
where all routing and modulation is resolved prior
to execution. This process is basically one of string
manipulation. Each ugen is responsible for generat-
ing a fragment of code that invokes both its callback
function and the callbacks of all ugens that feed into
it. Because all inputs to ugens are resolved recur-
sively, requesting the master output bus to perform
code generation will effectively flatten the entire
audio graph into a linear series of code fragments
invoking ugen callbacks. These code fragments are
then concatenated into a string representing the
master audio callback. This string, along with a
list of all arguments the master callback accepts, is
used to create an invokable function via JavaScriptÕs
Function constructor.

As a simple example of the codegen algorithm
in action, consider the high-level syntax used in
Figure 1 to create a low-frequency modulated sine
wave feeding a reverb that, in turn, feeds the default
output bus in Gibberish. Traversing from the master
output down through the graph, the code generation
will occur in the following order: Master Output
Bus → Reverb → Carrier → Add → Modulator.
The result is the callback function displayed in
Figure 2, which will be called every sample.

The variables sine 5, sine 8, reverb 11,
and bus2 0 refer not to the ugens but to their
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Figure 1. End-user code to
create a modulated sine
oscillator feeding a reverb
ugen.

Figure 1

Figure 2. Callback
function generated from
code in Figure 1, with
comments and spacing
added for readability.

Figure 2

signal-processing functions (also known as audio
callbacks). These individual ugen callbacks are
passed as arguments to the master callback func-
tion. The simplistic style of the generated code
generally leads to improved JSRE performance. For
example, in unit generators with modulated inputs,
the modulation graph and the resulting object refer-
ences have to be traversed every sample. Flattening
the graph ahead of time, by using code generation,
removes this performance penalty.

Note that parametric properties of the ugens are
translated as numeric literals (i.e., constants) in the
generated code. By storing properties as compile-
time constants, rather than using dynamic state,
expensive calls to continuously index the properties
are entirely avoided. But the implication, which
may appear unusual, is that code generation must
be invoked whenever a ugen property changes, in
addition to when ugens are added or removed. In the
given example, if we programmatically changed the
frequency of our modulator sine wave from 4 Hz to 3
Hz, code generation would be retriggered. To reduce
the cost of frequent regeneration, Gibberish caches
and reuses code for all ugens that have not changed.
Whenever a ugen property is changed, that ugen
is placed inside of a “dirty” array. During codegen
each ugen inside the dirty array regenerates the
code fragment that invokes its callback function;

the code fragments for the rest of the ugens remain
unaltered. Even if the callback is regenerated dozens
or hundreds of times a second, it still winds up being
fairly efficient, as only ugens with property changes
invoke their codegen method; all “clean” ugens
simply provide the last fragment they generated to
be concatenated into the master callback.

We explored the possibility of using codegen to
include all signal-processing procedures directly in
the main callback. We did this by passing variables
containing state to the main callback instead of
passing callback functions to be invoked. Here
the main callback becomes one giant function
(potentially thousands of lines of code in length)
instead of a shorter set of subroutine invocations.
Our experiments with this yielded significant
improvements in Chrome (better than twofold
performance gains in version 38, 64-bit, under
Mac OS X), but poor results in desktop versions
of Safari and Firefox under the same operating
system. We believe the JIT optimizer is unable to
process the callback function after the function
exceeds a certain length in these browsers. The
results are improved in a beta version of Safari
(r172617) we recently tested on Mac OS X, which
adds a low-level virtual machine compilation stage
to its JavaScript optimization arsenal. Callback
functions that include all processing, however,
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incur more than twice the CPU overhead of similar
callbacks run in a contemporaneous version of
Chrome (40.0.2197.2) running on the same operating
system.

Gibberish Ugens

Gibberish includes a variety of ugens, listed in
Table 1. In addition to standard low-level oscillators,
there are also a number of higher-level synthesis
objects that combine oscillators with filters and
envelopes. These high-level objects provide a quick
way to make interesting sounds using Gibberish,
and their source code also serves as models for
programmers interested in writing their own ugen
definitions.

Single-Sample Feedback

Enabling single-sample feedback is a benefit of
processing on a per-sample basis instead of on
buffers. It can be achieved in Gibberish using the
single-sample delay (SSD) ugen. This ugen samples
and stores the output of an input ugen at the end of
each callback execution and then makes that sample
available for the next execution. Figure 3 shows a
simple feedback example with a filter feeding into
itself.

In the generated callback shown in Figure 4,
note that there are two functions for the SSD ugen.
One (ssd 8) records an input sample, and the other
(ssd 3) plays the last sample recorded.

Table 1. Gibberish Ugens by Type

Oscillators Sine, Triangle, Square, Saw, Band-limited Saw, Band-limited PWM/Square, Noise, Wavetable
Drums Kick, Snare, Tom, Clave, Hi-Hat, Conga, Cowbell
Effects Waveshapers, Delay, Decimator, Ring Modulator, Flanger, Vibrato, Chorus, Tremolo, Reverb,

Granulator, Buffer Shuffler/Stutterer
Filters Biquad, State Variable, 24-dB Ladder, One-Pole
Synths Synth (oscillator + envelope), Synth2 (oscillator + filter + envelope), FM (2-operator),

Monosynth (3 oscillators + envelope + filter)
Math Add, Subtract, Multiply, Divide, Absolute Value, Square Root, Pow
Misc Sampler (record & playback), Envelope Follower, Single-Sample Delay, Attack/Decay Envelope,

Line/Ramp envelope, ADSR Envelope, Karplus-Strong, Bus

Figure 3. End-user code to
create single-sample
feedback into a filter.

Figure 3

Scheduling and Sequencing

Although the JSRE includes its own methods for
scheduling events, there is no guarantee about the
accuracy of the time used by this scheduler. Chris
Wilson, one of the primary architects of the Web
Audio API, suggested one approach to ensuring
accurate scheduling via temporally overlapping calls
to a scheduler that runs in the JSRE’s main thread
(Wilson 2013). The overlap helps account for jitter
that could otherwise occur due to other processing
on the main thread. This method creates tradeoffs
between temporal accuracy, efficiency, and the
ability to change characteristics of scheduling (such
as tempo) at will. Its primary advantage is resilience
to various browser events that incur processing on
the main thread (such as window resizing, network
message processing, and garbage collection) and that
could interfere with scheduling.

In contrast, per-sample processing in the Script-
Processor node provides the potential for sample-
accurate scheduling performed directly in its call-
back. In Gibberish the master clock is controlled by
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Figure 4. Callback
function for single-sample
feedback generated from
code in Figure 3.
Comments and spacing
added for readability.

an audio-rate signal. As a result, changes to tempo
do not affect scheduling, because they are calculated
on a per-sample basis. In addition to controlling the
master clock via an audio-rate signal (which is freely
definable by users), Gibberish provides a sequencer
variant with a clock that can be modulated at audio
rate in relation to the master clock signal. This
enables experimental approaches to time, such as
the creation of multiple sequencers that gradually
drift in and out of phase with one another through
audio-rate modulation.

Such scheduling is not limited to audio process-
ing. As all audio processing occurs in the main
thread, any instantiated object in the JSRE can be
manipulated within the audio callback. Gibberish
provides the ability to easily sequence anonymous
function calls that can directly affect visual and
interactive behaviors. It also offers a convenience
method, future(), that provides users with a
concise means of scheduling a single function
invocation with sample accuracy.

Interface.js

Interface.js provides a solution for quickly creating
graphical user interfaces (GUIs) using JavaScript
that work equally well with mouse- and touch-
interaction paradigms. The output of these GUI
widgets can control other JavaScript objects (such as
Gibberish ugens). The output can also be converted
to MIDI or Open Sound Control (OSC, cf. Wright
2005) messages via a small server program that is
included in the Interface.js download. This means
Interface.js can be used both to control programs

Table 2. Interface.js Widgets

Sliders Vertical Slider, Horizontal Slider,
Crossfader, Range Slider, Multislider

Buttons Toggle, Momentary, Contact,
Multibutton, Polygonal Button

Sensors Accelerometer, Gyroscope,
Miscellaneous Multitouch xy (with physics), Piano

Keyboard, Menu, Label, Text Input,
Patchbay, Knob

running in the browser and also to control external
programs such as digital audio workstations.

In addition to a wide variety of GUI elements,
Interface.js also provides unified access to ac-
celerometer readings and the orientation of mobile
devices. The widgets provided by Interface.js are
outlined in Table 2.

Event Handling in Interface.js

Interface.js binds widgets to object functions and
values using a target/key syntax. A widget’s target
specifies an object the widget should control,
and the key specifies a property or method to be
manipulated. What happens when a widget value
changes depends on what the key refers to: Object
properties are set to the new widget value, and object
methods are invoked with the widget value as the
first argument.

Widgets providing multiple dimensions of control
(e.g., x-y, accelerometer) are configured with arrays
of targets and keys containing one target and one key
for each dimension. Users can also register custom
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event handlers to create interactions that are more
complex than direct mappings between widgets and
property values.

Because most browsers only deal with either
touch or mouse events, Interface.js provides another
type of event handler, touchmouse, which responds
to either form of input. This enables developers to
create a single callback that will function regardless
of the type of device running the interface.

Another event handler, onvaluechange, is
called every time the value of a widget changes,
regardless of whether the widget changes by touch,
by the mouse, or by motion. Procedurally changing
a widget’s value (perhaps owing to the output
of another widget) will also trigger this event.
Although the touchmouse and onvaluechange
event handlers provide a unified interface for dealing
with all events, users are free to register for dedicated
mouse or touch events if they want to change how
interactivity functions across different modalities.

Interface Layout and Appearance

The main container unit of Interface.js is the panel
widget. A panel widget wraps an instance of HTML’s
canvas element, which is a 2-D drawing surface
with hardware graphics acceleration support in all
current desktop browsers and most current mobile
browsers. A panel widget’s constructor allows
users to specify an HTML element to contain the
canvas tag, allowing multiple interfaces to be placed
at different points in an HTML document. If no
container HTML element is provided, Interface.js
will automatically create a canvas element that fills
the entire window and attach it to the HTML page;
this minimizes the HTML needed to create a GUI.

Widget sizes can be provided either as absolute
values measured in pixels, or as relative values de-
fined in terms of the widget’s enclosing panel. Using
relative sizes enables users to define interfaces with-
out having to worry much about varying window
sizes or the screen sizes of different devices—for
example, a slider with a width of 0.5 will always fill
half the width of its enclosing panel, regardless of
the panel size, which is often in turn determined
by the size of the browser window. In certain usage

scenarios this approach may not yield satisfactory
results, however. For example, although a complex
interface with a high number of widgets designed for
a large screen will render with the correct propor-
tions on a small screen, the widgets may become too
small to be useful as interactive musical controls.

Networked Control

As an alternative to controlling Web Audio synthe-
sis graphs or other JavaScript objects, Interface.js
can also transmit output over a network, using
the WebSocket API to control remote applications.
The WebSocket API sends messages over the trans-
mission control protocol but features a handshake
mechanism relying on the hypertext transmission
protocol (HTTP). Because most musical applications
do not understand the WebSocket API, it becomes
necessary to translate messages received on a Web-
Socket to a musical messaging protocol, such as
OSC or MIDI.

Although there have been previous applications
that translate WebSocket data into OSC or MIDI
messages, we believe our solution is highly efficient.
Our application, Interface.Server, includes an HTTP
server that serves Interface.js files to Web browsers.
After launching Interface.Server, any user directing
a browser to the IP address where it is running will
receive an HTML page listing interfaces available for
use. When a user selects an interface from this list,
it is downloaded to the browser and a WebSocket
connection is automatically created, linking the
browser back to Interface.Server. In other words, the
computer running Interface.Server is automatically
the recipient of WebSocket messages generated
by the interfaces it provides. WebSocket messages
sent by interfaces are translated by Interface.Server
into OSC or MIDI messages as described in the
Interface.js files and forwarded to target applications.

A distinct advantage of this system is that
programmers do not need to think about estab-
lishing socket connections when developing their
interfaces, as no hard-coded IP addresses or auto-
discovery protocols are needed. Once the IP address
and port of the Interface.Server application is en-
tered into the browser, the URL can be bookmarked
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Figure 5. Screenshot of
Interface.Server,
monitoring the output of
three connected interfaces
running Web browsers.

for easy access. Individual interfaces can also be
bookmarked; in this case a WebSocket connection is
established as soon as the bookmarked interface is
loaded. On mobile devices, these bookmarks can be
represented by icons on users’ home screens; simply
tapping one of these icons fetches the interface and
immediately opens the appropriate connection.

The connection between devices running inter-
faces and Interface.Server is bidirectional, enabling
target applications receiving OSC and MIDI mes-
sages from Interface.Server to send messages to
connected interfaces and change characteristics of
individual widgets. Interface.Server also includes
live-coding capabilities so that target applications
can dynamically create and modify interface lay-
outs. These capabilities are based on ideas first
explored in the mobile application Control (Roberts,
Wakefield, and Wright 2012) and are currently sup-
ported by libraries for SuperCollider and Gibber.
Interface.Server provides a GUI enabling users to
easily monitor existing browser connections and
the messages they send to target applications, as

shown in Figure 5. The GUI also enables users
to define multiple target applications. These can
reside locally with Interface.Server or on different
computers, creating possibilities for distributed
computation and audio rendering.

Instruments in the Browser

Our research has considered both low-level and high-
level authoring techniques for browser-based DMIs.
As a relatively low-level technique, developers can
create their own HTML pages containing synthesis
graphs and interfaces designed using JavaScript.
Developers are also responsible for articulating the
minutiae of musical mappings and for publishing
their creations to a Web site, assuming they want to
make their instrument available for others to use.

At a higher level, end users can create DMIs with
Gibber. In Gibber, users deal only with JavaScript
and are completely removed from all HTML and
CSS markup. Mapping abstractions included in
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Figure 6. HTML with
embedded JavaScript code
to create a two-slider
interface controlling a sine
oscillator.

Gibber enable users to map interface elements to
synthesis elements in a single line of code, without
having to worry about expected value ranges or
perceptual output curves. Finally, users can easily
publish their instruments to a central database in
Gibber, removing the need for a Web hosting service
to distribute DMIs.

Integrating Interface.js and Gibberish.js

There are a few simple steps required to use
Interface.js and Gibberish.js together to make a
musical interface without Gibber. Starting with an
HTML document containing the bare minimum
necessary tags (<html>, <head>, and <body>), add
two <script> tags to import the Interface and
Gibberish Javascript files. A third <script> tag
inside the body element contains all user code to
create the interface and the audio graph. Figure 6
shows a complete sample interface file consisting
of a sine oscillator with frequency and amplitude

Figure 7. A simple
instrument created in 22
lines of code and markup
using Gibberish.js and
Interface.js, as shown in
Figure 6, or a single line of
JavaScript in Gibber.

controlled by two sliders, and Figure 7 shows a
simple instrument created with the code from
Figure 6.

Instrument Design in Gibber

Gibber provides numerous abstractions to assist in
designing DMIs and a server for storing instruments
and compositions. In this section we discuss the
server and summarize two abstractions that enable
us to condense the 22-line code example shown in
Figure 6 into a single line of code:

Sine(Slider( ), Slider( ))

Mapping and Interface Abstractions

Creating mappings between audio, visual, and
interactive elements is a nontrivial task. Many
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factors come into play, including signal sampling
rates, usable ranges, and whether changes to signals
are perceived linearly or logarithmically. Thus, even
simple mappings, such as mapping the movement
of a slider to the frequency of an oscillator, requires
a variety of processing steps to achieve a musically
satisfying result.

Using our slider-to-frequency example, first we
must set the output range of our slider to a range of
frequencies that we want to control. Next, we need
to set the output scale of the slider to be logarithmic,
to match human perception of pitch. Finally, we
need to place a one-pole filter on the slider output,
to remove the quantization effects that result from
mapping a discrete value (on-screen slider values
are resolution-limited to individual pixels and
sampled much more slowly than audio rate) to
a continuous one. Even the most naive mapping
would, at minimum, require the first transformation
in order to have a musically meaningful effect.

Georg Essl addressed this mapping problem in his
UrMus system (Essl 2010), by creating an abstraction
called FlowBoxes that enables developers to easily
make connections between interactive and audio
modalities. Once FlowBoxes wrapping ugens or
interactive elements are initialized, they can be
connected in UrMus as follows:

mySinOsc = FlowBox(FBSinOsc)

FBAccel.X:SetPush(mySinOsc.Freq)

In this example, the acceleration on the x-axis
controls the frequency of an oscillator. UrMus
has flexible semantics for defining push and pull
relationships between inputs and outputs, and for
performing various types of intermediate signal
conditioning. In Gibber, we build on the ideas
found in UrMus, but abstract them further to make
a simpler mental model for programmers. This
example could be accomplished with the following
code in Gibber:

sine = Sine(Accelerometer.X)

Gibber forgoes the flexibility of defining push
or pull connections that UrMus offers, and instead
affords the construction of continuous, multirate
mappings via simple assignment. To later change

our sine oscillator’s frequency to be controlled by
the output amplitude envelope of an instantiated
drum loop, only a single line of code is required:

sine.frequency = drums.Out

The key in the notation is to capitalize the prop-
erty name on the right of the assignment operator (in
this case Out). This notation tells Gibber to make a
continuous mapping instead of making a one-time
assignment using the instantaneous value. The
contribution is removing barriers to the creation of
continuous mappings that are potentially multirate
and multimodal; all that is required is the capital-
ization of a single letter in normal assignment. We
argue that this encourages experimentation, by sig-
nificantly lowering the “viscosity” of the notation.
The mapping abstractions also extend to mappings
between the visual capabilities of Gibber (including
2-D drawing, 3-D scene creation, and live shader
programming) and the audio and interactive affor-
dances. As one example, the rotation of a cube can
be mapped to continuously control the frequency of
an oscillator in a single line of code, with the same
ease as mapping interactive elements to control unit
generators (Roberts et al. 2014a).

For GUI creation, Gibber takes the elements
provided by Interface.js and automatically generates
layouts using a subdivision algorithm we first
explored in the mobile application Control (Roberts
2011). Although this algorithm performs well for
prototyping simple interfaces quickly, Gibber also
provides the ability to specify custom boundary
boxes for each widget in a fashion equivalent to
typical Interface.js programming. Figure 8 shows
three widgets in an automatic layout.

Publication, Browsing, and Distribution of DMIs

Gibber provides a central database for publishing,
browsing, and distributing programs written by end
users; we refer to such programs as giblets. The
server also enables real-time chat and collaborative
editing between Gibber users. When users first
publish a giblet, they are only required to give it
a name. They can optionally provide a variety of
metadata, however, that is helpful for searching the
database and browsing the results of queries (shown

36 Computer Music Journal



Figure 8. A more complex
interface in Gibberish,
with an xy widget
controlling a variety of
parameters on an FM

synthesizer, banks of
sliders controlling pitch in
a drum sequence, and a
keyboard that targets the
FM synthesizer.

in Figure 9), including arbitrary user-defined tags
and notes on how to run the giblet.

After publishing a giblet, the user is immediately
provided with two URLs. The first displays the code
associated with the giblet. The second immediately
runs the giblet filling the entire browser window;
the code and Gibber’s interface are not displayed.
Because typing URLs on mobile devices can be
time-consuming and frustrating, Gibber provides
every user account with a URL, enabling users to see
all their published giblets in a scrollable list, so that
they can easily tap any of their publications to launch
it. Giblets launched from this list are immediately
executed and scaled to fill the browser window. In

addition to launching giblets through this list, users
can also view their files and associated metadata in
Gibber’s file browser, as shown in Figure 9.

Related Work

There are a growing number of options for writing
synthesis algorithms using JavaScript. Audiolib.js
(see audiolibjs.org) was one of the first significant
JavaScript audio libraries written, and it still pro-
vides an excellent array of synthesis options. It
was our original choice for Gibber; we abandoned
it only after discovering that code generation often
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Figure 9. Gibber’s browser,
showing the search
interface, as well as
recently added user files
and their associated
metadata.

leads to more efficient performance for per-sample
processing involving dynamic audio graphs. Au-
diolib.js performs no graph management, leaving
programmers to implement their own audio graphs
as needed.

Other libraries that use the ScriptProcessor node
take markedly different approaches in terms of
the APIs they offer. For example, Flocking (Colin
and Tindale 2014) enables users to define new
ugens declaratively using JavaScript Object No-
tation (JSON), and Timbre.js (available online at
mohayonao.github.io/timbre.js) is an impressive
library that enables users to compose ugens in a
functional syntax. In addition to its extensive use
of code generation and emphasis on per-sample
processing, Gibberish.js differentiates itself from
these other libraries by providing complex synthe-
sis ugens. One example is a polyphonic, enveloped,
two-operator FM synthesis ugen. Another is the Gib-
berish Monosynth, a three-oscillator band-limited

synthesizer with an envelope, a 24-dB resonant fil-
ter, and independent tuning and waveshape controls
for each oscillator. By including complex ugens, we
allow programmers to immediately begin creating
music with rich sound sources. Tone.js (online at
github.com/TONEnoTONE/Tone.js) is a relatively
new JavaScript audio library that also includes
complex synthesis ugens.

Although libraries using the ScriptProcessor node
have perhaps seen the most development, a variety
of other options exist for audio synthesis in the
browser environment. One solution for synthesis is
JSyn (Burk 1998), a comprehensive Java synthesis
library originating over a decade ago. Unfortunately,
many browsers do not support Java by default, and
others do not support it at all (including Safari
on iOS). Work with plug-ins has also explored
optimizing Csound for use in the browser using
various techniques (Lazzarini et al. 2014). A portable
native client (PNaCl) executable that runs Csound
was written for desktop Chrome, while Emscripten,
a compiler that converts low-level virtual machine
bytecode to JavaScript, was used to created an
optimized version for Firefox that runs in the
ScriptProcessor node. The authors of these ports
hope that the Emscripten version of Csound will
gain performance improvements with the upcoming
Audio Worker implementation. Instead of using the
ScriptProcessor node, the Web Audio API eXtension
(WAAX) (Choi and Berger 2013) seeks to extend
the native nodes of the Web Audio API and make
them easier to use; Tone.js also uses native nodes
wherever possible. Soliton.js, the JavaScript library
that forms the audio backbone of the live-coding
environment Lich.js (McKinney 2014), attempts to
combine the best of both worlds, using native nodes
when available and ScriptProcessor nodes whenever
a ugen requires features not provided natively.

There are many other interface libraries for HTML
and JavaScript, but few handle both touch and mouse
modalities and almost none cater for the needs of
musicians and live performers. A notable exception
to this is the NexusUI project (Taylor et al. 2014),
which provides similar functionality to Interface.js.
Where Interface.js only requires use of JavaScript
and boilerplate HTML to create interfaces, NexusUI
instead uses a more traditional approach of HTML,
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CSS, and JavaScript in tandem. The library is very
easy to use, and has been used in conjunction
with Gibberish.js and other audio libraries to teach
teenagers to create DMIs. NexusUI also provides a
novel integration with Max/MSP called NexusUp
that allows interfaces made with Max widgets to be
easily pushed to remote browsers and mirrored using
NexusUI widgets. Unlike Interface.js, however,
NexusUI does not currently provide bidirectional
communication between remote interfaces and
target applications. The NexusUI authors intend
to provide full bidirectional communication in the
future.

Conclusions and Future Work

Gibberish.js, Interface.js, and Gibber are all
open source under the MIT license and avail-
able for download on GitHub (available on-
line at github.com/charlieroberts/Gibberish,
github.com/charlieroberts/interface.js, and
github.com/charlieroberts/Gibber, respectively).
They have been used in a variety of educational
settings, from work with middle-school students to
university courses. Universities using elements of
our research in their teaching include the University
of California at Santa Barbara; Griffith University;
the University of Florida; Louisiana State Univer-
sity; Goldsmiths, University of London; and Istanbul
Technical University. Going forward, we are par-
ticularly interested in expanding the educational
potential of Gibber via its social affordances. For
example, we plan to let users “star” giblets they
like and to enable Gibber’s file browser to support
ordering search query results by the number of stars
each giblet has. Such practices are already common
in other online creative coding environments such
as Scratch (Resnick et al. 2009).

The authors of Flocking reported very strong
performance advantages in comparison with Gib-
berish (Colin and Tindale 2014) after running an
offline rendering test of a sine oscillator with mod-
ulated vibrato. Repeating their test with the most
recent versions of Flocking and Gibberish yielded
a 50 percent performance advantage for Flocking
in Chrome Canary under Mac OS X on a 2.6 GHz

i7 Macbook Pro, significant but much less than
originally reported. Using the testing framework
created by the authors of Flocking, we designed
another test, creating a graph of 50 audio-rate
sine oscillators. The tests are available online at
github.com/charlieroberts/webaudio-performance
-benchmarks. In this test, Gibberish performance
was found to be roughly equivalent to that of
Flocking in Chrome. These results, in conjunction
with those reported previously by the authors of
Flocking, show the difficulty in making gener-
alizations about performance between JavaScript
audio libraries. Comparisons must also take into
account the architectural difference of Gibberish’s
per-sample processing versus Flocking’s process-
ing of audio in blocks of 64 samples by default;
a block size of 64 samples was used by Flocking
in all tests described here. Per-sample processing
typically comes with a performance penalty but
also enables various important features of Gibberish
that are unavailable in Flocking, including sample-
accurate scheduling, single-sample delay feedback
networks, and intra-block graph reconfiguration.
Correspondence with the authors of Flocking to
examine these testing issues has also included dis-
cussion of collaboration to create a testing suite
for libraries that use the ScriptProcessor node. We
look forward to comprehensively analyzing the
performance of Gibberish in comparison with other
libraries with these future tests, while bearing in
mind that performance results are best analyzed
alongside architectural decisions that determine
functionality.

We are planning the development of a JavaScript
audio analysis library that could function either
on its own, in conjunction with Gibberish, or
inside of Gibber. At the time of writing, Gibberish
only provides an envelope follower for analysis,
whereas Gibber adds a FFT analyzing its master
output that can be used to help generate audio-
reactive visuals. Ideally, this library would take
advantage of the ScriptProcessor node as well as the
native Web Audio analysis nodes for efficiency and
would perform both real-time and offline analysis.
We look forward to exploring the Audio Worker
specification once the standard has cross-browser
support.
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